Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Daru ; 31(2): 267-272, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37318715

RESUMO

BACKGROUND: Chronic oral anticancer therapies, are increasingly prescribed and present new challenges including the enhanced risk of overlooked drug-drug interactions (DDIs). Lengthy treatments and patients' management by different professionals can lead to serious prescribing errors that therapeutic drug monitoring (TDM) can help identifying thus allowing a more effective and safer treatment of patients with polypharmacy. OBJECTIVES: This report aims to exemplify how an intensified pharmacological approach could help in the clinical monitoring of patients on chronic treatments. METHODS: A patient with gastrointestinal stromal tumor was referred to our clinical pharmacology service due to tumor progression while on imatinib therapy. The investigation was based on TDM, pharmacogenetics, DDI evaluation and Circulating tumor DNA (ctDNA) analysis. The patient underwent repeated blood samplings to measure imatinib and norimatinib plasma concentrations through a validated LC-MS/MS method. Polymorphisms affecting genes involved in imatinib metabolism and transport were investigated using SNPline PCR Genotyping System. Drug-drug interactions were evaluated though Lexicomp. ctDNA analysis was performed on MiSeq platform. RESULTS: TDM analysis revealed that the patient was underexposed to imatinib (Cmin = 406 ng/mL; target Cmin = 1100 ng/mL). Subsequent DDI analysis highlighted a dangerous interaction with carbamazepine, via CYP3A4 and P-gp strong induction, omitted at the time of imatinib treatment start. No relevant pharmacogenetic variants were identified and appropriate compliance to treatment was ascertained. ctDNA monitoring was performed to assess potential tumor-related resistance to imatinib. Carbamazepine was cautiously switched to a non-interacting antiepileptic drug, restoting IMA plasma concentration (i.e. Cmin = 4298 ng/mL). The progression of the disease, which in turn led to the patient's death, was also witnessed by an increasing fraction of ctDNA in plasma. CONCLUSION: The active pharmacological monitoring allowed the identification of a dangerous previously over-looked DDI leading to IMA under-exposure. The switch to a different antiepileptic treatment, reversed the effect of DDI, restoring therapeutic IMA plasmatic concentrations.


Assuntos
Antineoplásicos , Tumores do Estroma Gastrointestinal , Humanos , Mesilato de Imatinib/uso terapêutico , Antineoplásicos/uso terapêutico , Monitoramento de Medicamentos/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Falha de Tratamento , Interações Medicamentosas , Carbamazepina/uso terapêutico
2.
Biomed Pharmacother ; 164: 114906, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295250

RESUMO

The impact of body mass index (BMI) on treatment outcomes in patients with cancer is gaining increasing attention given the limited data available. The aim of this study was to investigate the contribution of BMI on the safety and efficacy profile of palbociclib in 134 patients with metastatic luminal-like breast cancer treated with palbociclib and endocrine therapy (ET). Normal-weight and underweight patients (BMI<25) were compared with overweight and obese (BMI≥25). Detailed clinical and demographic data were collected. Patients with a BMI<25 had a higher incidence of relevant-hematologic toxicities (p = 0.001), dose reduction events (p = 0.003), and tolerated lower dose intensities (p = 0.023) compared to patients with a BMI≥25. In addition, patients with a BMI<25 had significantly shorter progression-free survival (log-rank p = 0.0332). A significant difference was observed in the subgroup of patients for whom systemic palbociclib concentrations were available: patients with a BMI<25 had a 25% higher median minimum plasma concentrations (Cmin) compared to BMI≥25. This study provides compelling evidence for a clinically relevant contribution of BMI in discriminating a group of patients who experienced multiple toxicities that appeared to affect treatment adherence and lead to poorer survival. BMI could become a valuable tool for personalizing the starting dose of palbociclib to improve its safety and efficacy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama , Humanos , Feminino , Índice de Massa Corporal , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Receptor ErbB-2 , Neoplasias da Mama/patologia , Resultado do Tratamento
3.
Pharmaceutics ; 15(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242766

RESUMO

Poly (ADP-ribose) polymerase inhibitors (PARPis) are becoming increasingly meaningful in oncology, and their therapeutic drug monitoring (TDM) might be beneficial for patients. Several bioanalytical methods have been reported for PARPis quantification in human plasma, but advantages might be obtained using dried blood spot (DBS) as a sampling technique. Our aim was to develop and validate a liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for olaparib, rucaparib, and niraparib quantification in both human plasma and DBS matrices. Additionally, we aimed to assess the correlation between the drug concentrations measured in these two matrices. DBS from patients was obtained using Hemaxis DB10 for volumetric sampling. Analytes were separated on a Cortecs-T3 column and detected with electrospray ionization (ESI)-MS in positive ionization mode. Validation was performed according to the latest regulatory guidelines, in the range (ng/mL) 140-7000 for olaparib, 100-5000 for rucaparib, and 60-3000 for niraparib, within the hematocrit (Hct) range 29-45%. The Passing-Bablok and Bland-Altman statistical analyses revealed a strong correlation between plasma and DBS for olaparib and niraparib. However, due to the limited amount of data, it was challenging to establish a robust regression analysis for rucaparib. To ensure a more reliable assessment, additional samples are required. The DBS-to-plasma ratio was used as a conversion factor (CF) without considering any patient-related hematological parameters. These results provide a solid basis for the feasibility of PARPis TDM using both plasma and DBS matrices.

4.
Ther Drug Monit ; 45(3): 306-317, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728223

RESUMO

BACKGROUND: Therapeutic drug monitoring (TDM) of poly(ADP-ribose) polymerase inhibitors (PARPis) is an exploratory practice aimed at improving the quality of treatment through personalized therapy. Currently, there are 4 European Medicines Agency-approved and US Food and Drug Administration-approved PARPis available clinically whose quantification requires validated analytical methods: olaparib, niraparib, rucaparib, and talazoparib. The purpose of this literature review was to highlight the pharmacological features of PARPis that could support their TDM practice and provide a detailed discussion of the available liquid chromatography coupled with tandem mass spectrometry methods for their quantification. METHODS: Using several Medical Subject Heading terms, the literature was searched using several research engines, including SciFinder, Web of Science, Google Scholar, and PubMed, to find articles published before August 2022. RESULTS: Exposure-efficacy and exposure-safety profiles, drug-drug interactions, and hepatic/renal impairment of PARPis provide the potential rationale to monitor their concentrations through TDM. Several bioanalytical methods for their quantification have been reported and compared, and a great deal of heterogeneity has been found among methods, regarding both their analytical and regulatory aspects. CONCLUSIONS: In addition to reducing toxicity and increasing the efficacy of PARPis therapy, TDM could be beneficial to thoroughly investigate the exposure-response relationships of PARPis and to establish pharmacokinetic thresholds for clinical decisions. Based on the comparison of published bioanalytical methods, their transferability and validation both play a key role in method selection. For future use in clinical TDM, we anticipate that bioanalytical methods should address every analytical need more thoroughly and should be validated with standardized guidelines.


Assuntos
Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Estados Unidos , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Monitoramento de Medicamentos , Cromatografia Líquida , Rim
5.
J Pharm Biomed Anal ; 226: 115255, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36682207

RESUMO

A new LC-MS/MS method for the quantification of lenvatinib (LENVA) in venous Dried Blood Spot (DBS) samples has been presented. This method is characterized by a short run time (4 min), requires a volumetric sampling of 10 µL and extraction of the entire spot to avoid hematocrit (Hct) and spot volume effects. The quantification method was successfully validated in the range of 5.00-2000 ng/mL on two different DBS filter papers (Whatman 31 ET CHR and Whatman 903) according to European Medicines Agency (EMA) and Food and Drug Administration (FDA) guidelines, European Bioanalysis Forum (EBF), and International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT) recommendations. During the validation process, the following parameters were evaluated: recovery (≥ 77% for both filter papers), absence of matrix effect, process efficiency (close to 72% for Whatman 31 ET CHR and close to 77% for Whatman 903), Hct effect (CV ≤ 6.3% and accuracy within 96-112%), linearity (r ≥ 0.998 for Whatman 31 ET CHR and r ≥ 0.999 for Whatman 903), intra- and inter-day precision (CV ≤ 8.8%) and accuracy (92.8-108%), selectivity and sensitivity, reproducibility with incurred samples reanalysis (ISR), and stability. This method was applied to quantify venous DBS samples from patients with hepatocellular carcinoma treated with LENVA enrolled in a cross-validation study (CRO-2018-83). A good correlation between LENVA plasma concentration determined by standard procedure and the new developed DBS LENVA method (R2 ≥ 0.996) has been observed.


Assuntos
Quinolinas , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Teste em Amostras de Sangue Seco/métodos
6.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674620

RESUMO

Photoactivatable Pt(IV) prodrugs represent nowadays an intriguing class of potential metal-based drugs, endowed with more chemical inertness in their oxidized form and better selectivity for the target with respect to the clinically established Pt(II) compounds. In fact, they have the possibility to be reduced by light irradiation directly at the site of interest. For this reason, we synthesized a new Pt(IV) complex, [Pt(OCOCH3)3(4'-phenyl-2,2':6',2''-terpyridine)][CF3SO3] (1), that is well soluble in aqueous medium and totally unreactive towards selected model biomolecules until its reduction. The highlight of this work is the rapid and efficient photoreduction of 1 with visible light (460 nm), which leads to its reactive Pt(II) analogue. This behavior was made possible by taking advantage of an efficient catalytic system based on flavin and NADH, which is naturally present in the cellular environment. As a comparison, the reduction of 1 was also studied with simple UV irradiation, but both UV-Vis spectrophotometry and 1H-NMR spectrometry showed that the flavin-catalyzed reduction with visible light was faster. Lastly, the reactivity against two representative biological targets, i.e., human serum albumin and one monofilament oligonucleotide fragment, was evaluated by high-resolution mass spectrometry. The results clearly pointed out that the prodrug 1 did not interact with these targets until its photoreduction to the Pt(II) analogue.


Assuntos
Antineoplásicos , Pró-Fármacos , Humanos , Antineoplásicos/química , Compostos Organoplatínicos/química , Luz , Espectroscopia de Ressonância Magnética , Pró-Fármacos/química
7.
Front Pharmacol ; 13: 897951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35942220

RESUMO

A wide inter-individual variability in the therapeutic response to cyclin-dependent kinases 4 and 6 inhibitors (CDKis) has been reported. We herein present a case series of five patients treated with either palbociclib or ribociclib referred to our clinical pharmacological counselling, including therapeutic drug monitoring (TDM), pharmacogenetics, and drug-drug interaction analysis to support clinicians in the management of CDKis treatment for metastatic breast cancer. Patients' plasma samples for TDM analysis were collected at steady state and analyzed by an LC-MS/MS method for minimum plasma concentration (Cmin) evaluation. Under and overexposure to the drug were defined based on the mean Cmin values observed in population pharmacokinetic studies. Polymorphisms in selected genes encoding for proteins involved in drug absorption, distribution, metabolism, and elimination were analyzed (CYP3A4, CYP3A5, ABCB1, SLCO1B1, and ABCG2). Three of the five reported cases presented a CDKi plasma level above the population mean value and were referred for toxicity. One of them presented a low function ABCB1 haplotype (ABCB1-rs1128503, rs1045642, and rs2032582), possibly causative of both increased drug oral absorption and plasmatic concentration. Two patients showed underexposure to CDKis, and one of them was referred for early progression. In one patient, a CYP3A5*1/*3 genotype was found to be potentially responsible for more efficient drug metabolism and lower drug plasma concentration. This intensified pharmacological approach in clinical practice has been shown to be potentially effective in supporting prescribing oncologists with dose and drug selection and could be ultimately useful for increasing both the safety and efficacy profiles of CDKi treatment.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35940043

RESUMO

Abemaciclib (ABEMA) is the last CDKi approved for the treatment of breast cancer. Adverse reactions to this drug are not experienced in the same manner by the entire patient population but in case of severe toxicity dose reductions and therapy discontinuation are required, suggesting that a TDM-guided treatment could be beneficial for these patients. ABEMA is extensively metabolized by the liver. The most abundant active metabolites are M2 and M20. This CDKi is administered together with anti-estrogen drugs, such as letrozole (LETRO). The aim of this work was to develop and validate a LC-MS/MS method for the simultaneous quantification of ABEMA, M2, M20, and LETRO. The chromatographic separation of the analytes was obtained using a SIL-20AC XR auto-sampler coupled to LC-20AD UFLC Prominence XR pumps (Shimadzu, Tokyo, Japan). The chromatographic column employed was an XTerra MS C18, (3,5 µm, 125 Å, 50x2.1 mm) coupled with a Security Guard Cartridge (MS C18, 125 Å, 3.9x5 mm) provided by Waters. Detection was performed by an API 4000 QTrap (SCIEX) mass spectrometer. The presented analytical method was fully validated according to EMA and FDA guidelines on bioanalytical method validation. Linearity was confirmed on 10 independent tests (R2 within 0.997-1.000) over the concentration ranges of 40-800 ng/mL for ABEMA, 10-200 ng/mL for M2 and M20, 20-400 ng/mL for LETRO. The method was applied to analyze plasma samples from patients enrolled in a clinical trial, collected at Cmin. Incurred sample reanalysis was performed on a set of 30 samples, confirming the reproducibility of the analytical method.


Assuntos
Monitoramento de Medicamentos , Espectrometria de Massas em Tandem , Aminopiridinas , Benzimidazóis , Cromatografia Líquida/métodos , Humanos , Letrozol , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-34700133

RESUMO

Therapeutic drug monitoring (TDM) is strongly suggested to define the proper drug dosage to overcome inter- and intra-patient variability in drug exposure, which is typically observed with oral anticancer agents, such as palbociclib (PALBO), ribociclib (RIBO) and letrozole (LETRO), all approved for the treatment of HR+, HER2- locally advanced or metastatic breast cancer (BC). Optimal TDM implementation requires a blood sampling organization that can be hampered by limited availability of health and laboratory personnel. Dried Blood Spot (DBS) sampling is proposed to overcome such limitations. The aim of this work was the development of a new LC-MS/MS method to analyze DBS samples containing PALBO, RIBO, and LETRO. Analytes extraction from DBS was performed by adding a methanolic solution containing the corresponding internal standards. LC-MS/MS analysis was performed using a LC Nexera (Shimadzu) system coupled with an API 4000 QTrap (SCIEX) mass spectrometer. The chromatographic separation was performed on a Luna Omega Polar C18 column (Phenomenex). The method was applied to 38 clinical samples collected by finger prick. The influence of hematocrit and spot size, sample homogeneity, stability, and correlation between finger prick and venous DBS measurement were assessed. The analytical validation was performed according to EMA and FDA guidelines. The analytical range of the method was 1 to 250 ng/mL for PALBO, 40 to 10000 ng/mL for RIBO, and 2 to 500 ng/mL for LETRO, where linearity was assessed, obtaining mean coefficients of determination (R2) of 0.9979 for PALBO, 0.9980 for RIBO, and 0.9987 for LETRO). The LC-MS/MS method runtime was 6.6 min. Incurred sample reanalysis demonstrated reproducibility, as the percentage difference between the two quantifications was lower than 20% for 100% of PALBO, 81.8% of RIBO, and 90.9% of LETRO paired samples. Intra- and inter-day precision (CV (%)) was lower than 11.4% and intra- and inter-day accuracy was between 90.0 and 106.5%. DBS sample stability at room temperature was confirmed for 2.5 months. A positive correlation was observed between DBS and plasma concentrations for the 3 drugs, Lin's concordance correlation coefficients obtained by DBS normalization applying a selected strategy were 0.958 for PALBO, 0.957 for RIBO, and 0.963 for LETRO. In conclusion, a fast, easy, and reproducible DBS LC-MS/MS method for the simultaneous quantification of palbociclib; ribociclib and letrozole was developed to be used in clinical practice.


Assuntos
Aminopiridinas/sangue , Antineoplásicos/sangue , Neoplasias da Mama/tratamento farmacológico , Cromatografia Líquida/métodos , Teste em Amostras de Sangue Seco/métodos , Monitoramento de Medicamentos/métodos , Letrozol/sangue , Piperazinas/sangue , Purinas/sangue , Piridinas/sangue , Espectrometria de Massas em Tandem/métodos , Aminopiridinas/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias da Mama/sangue , Feminino , Humanos , Letrozol/uso terapêutico , Piperazinas/uso terapêutico , Purinas/uso terapêutico , Piridinas/uso terapêutico
10.
PLoS One ; 16(10): e0259137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34699578

RESUMO

Lenvatinib (LENVA) is an oral antineoplastic drug used for the treatment of hepatocellular carcinoma and thyroid carcinoma. LENVA therapeutic drug monitoring (TDM) should be mandatory for a precision medicine to optimize the drug dosage. To this end, the development of a sensitive and robust quantification method to be applied in the clinical setting is essential. The aim of this work was to develop and validate a sensitive, rapid, and cost-effective LC-MS/MS method for the quantification of LENVA in human plasma. On this premise, sample preparation was based on a protein precipitation and the chromatographic separation was achieved on a Synergi Fusion RP C18 column in 4 min. The method was completely and successfully validated according to European Medicines Agency (EMA) and Food and Drug Administration (FDA) guidelines, with good linearity in the range of 0.50-2000 ng/mL (R≥0.9968). Coefficient of variation (CV) for intra- and inter-day precision was ≤11.3% and accuracy ranged from 96.3 to 109.0%, internal standard normalized matrix effect CV% was ≤2.8% and recovery was ≥95.6%. Successful results were obtained for sensitivity (signal to noise (S/N) ratio >21) and selectivity, dilution integrity (CV% ≤ 4.0% and accuracy 99.9-102%), and analyte stability under various handling and storage conditions both in matrix and solvents. This method was applied to quantify LENVA in patient's plasma samples and covered the concentration range achievable in patients. In conclusion, a sensitive and robust quantification method was developed and validated to be applied in the clinical setting.


Assuntos
Antineoplásicos/sangue , Cromatografia Líquida/métodos , Monitoramento de Medicamentos/métodos , Compostos de Fenilureia/sangue , Quinolinas/sangue , Espectrometria de Massas em Tandem/métodos , Humanos , Limite de Detecção , Reprodutibilidade dos Testes
11.
Molecules ; 26(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921819

RESUMO

In this work, we have analysed the binding of the Pt(II) complexes ([PtCl(4'-phenyl-2,2':6',2″-terpyridine)](CF3SO3) (1), [PtI(4'-phenyl-2,2':6',2″-terpyridine)](CF3SO3) (2) and [PtCl(1,3-di(2-pyridyl)benzene) (3)] with selected model proteins (hen egg-white lysozyme, HEWL, and ribonuclease A, RNase A). Platinum coordination compounds are intensively studied to develop improved anticancer agents. In this regard, a critical issue is the possible role of Pt-protein interactions in their mechanisms of action. Multiple techniques such as differential scanning calorimetry (DSC), electrospray ionization mass spectrometry (ESI-MS) and UV-Vis absorbance titrations were used to enlighten the details of the binding to the different biosubstrates. On the one hand, it may be concluded that the affinity of 3 for the proteins is low. On the other hand, 1 and 2 strongly bind them, but with major binding mode differences when switching from HEWL to RNase A. Both 1 and 2 bind to HEWL with a non-specific (DSC) and non-covalent (ESI-MS) binding mode, dominated by a 1:1 binding stoichiometry (UV-Vis). ESI-MS data indicate a protein-driven chloride loss that does not convert into a covalent bond, likely due to the unfavourable complexes' geometries and steric hindrance. This result, together with the significant changes of the absorbance profiles of the complex upon interaction, suggest an electrostatic binding mode supported by some stacking interaction of the aromatic ligand. Very differently, in the case of RNase A, slow formation of covalent adducts occurs (DSC, ESI-MS). The reactivity is higher for the iodo-compound 2, in agreement with iodine lability higher than chlorine.


Assuntos
Antineoplásicos/química , Compostos Organoplatínicos/química , Proteínas/química , Termodinâmica , Espectrometria de Massas por Ionização por Electrospray
12.
Dalton Trans ; 48(29): 10933-10944, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31165118

RESUMO

The use of Pt(iv) complexes as potential anticancer drugs is attractive, because they have higher stability and less side effects than Pt(ii) compounds. Moreover, some Pt(iv) complexes can also be activated with light, opening an avenue to photochemotherapy. Our purpose is to widen the library of photoactivatable Pt(iv)-based prodrugs and here we report on the oxidation of the Pt(ii) compound [PtCl(4'-phenyl-2,2':6',2''-terpyridine)][CF3SO3] (1) with PhICl2 or H2O2. The synthetic procedure avoids the formation of multiple species: the treatment with PhICl2 produces the Pt(iv) complex with axial chlorides, [PtCl3(4'-phenyl-2,2':6',2''-terpyridine)][CF3SO3] (2), while H2O2 oxidation and post-synthesis carboxylation produce [Pt(OCOCH3)2Cl(4'-phenyl-2,2':6',2''-terpyridine)][CF3SO3] (3), bearing acetates in the axial positions. 2 and 3 are stable in physiological-like buffers and in DMSO in the dark, but undergo photoreduction to 1 upon irradiation at 365 nm. Their stability toward reduction is a fundamental parameter to consider: cyclic voltammetry experiments show that the 2 electron reduction Pt(iv) → Pt(ii) occurs at a more negative potential for 3, because of the greater stabilization provided by the acetate axial groups; noteworthily, 3 is stable for hours also in the presence of mM concentration of glutathione. The cytotoxicity of 2 and 3 toward A2780 and A2780cis cell lines reveals that 3 is the least toxic in the dark, but is able to produce cytotoxic effects far higher than cisplatin when irradiated. To shed light on the mechanistic aspects, the interaction with protein and DNA models has been explored through high-resolution mass spectrometry revealing that 2 and 3 behave as prodrugs, but are able to bind to biological targets only after irradiation.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Luz , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Animais , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , DNA/metabolismo , Humanos , Compostos Organoplatínicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...